10.5 The product rule

Proving this is a little tricky, and needs some ingenuity. The product rule gives us a way to find the derivative of a function which is the product of two functions f(x)=a(x)b(x)f(x)=a(x)\cdot b(x).

The trick here is to "add zero"

limh0f(x+h)f(x)h\displaystyle\lim_{h\to 0}\frac{f(x+h)-f(x)}{h} =a(x+h)b(x+h)a(x)b(x)h\displaystyle=\frac{a(x+h)b(x+h)-a(x)b(x)}{h} (10.27)
=limh0a(x+h)b(x+h)a(x+h)b(x)+a(x+h)b(x)a(x)b(x)h\displaystyle=\lim_{h\to 0}\frac{a(x+h)b(x+h)-a(x+h)b(x)+a(x+h)b(x)-a(x)b(x)}{h} (10.28)
=limh0a(x+h)(b(x+h)b(x))+b(x)(a(x+h)a(x)h\displaystyle=\lim_{h\to 0}\frac{a(x+h)(b(x+h)-b(x))+b(x)(a(x+h)-a(x)}{h} (10.29)
=limh0a(x+h)(b(x+h)b(x))h+limh0b(x)(a(x+h)a(x)h\displaystyle=\lim_{h\to 0}\frac{a(x+h)(b(x+h)-b(x))}{h}+\lim_{h\to 0}\frac{b(% x)(a(x+h)-a(x)}{h} (10.30)
=limh0a(x+h)(b(x+h)b(x))h+limh0b(x)(a(x+h)a(x)h\displaystyle=\lim_{h\to 0}a(x+h)\frac{(b(x+h)-b(x))}{h}+\lim_{h\to 0}b(x)% \frac{(a(x+h)-a(x)}{h} (10.31)

If (as it does) h0h\to 0 then a(x+h)a(x)a(x+h)\to a(x), we can rewrite the limit as

a(x)limh0b(x+h)b(x)h+b(x)limh0a(x+h)a(x)h\displaystyle a(x)\lim_{h\to 0}\frac{b(x+h)-b(x)}{h}+b(x)\lim_{h\to 0}\frac{a(% x+h)-a(x)}{h} =a(x)ddx[b(x)]+b(x)ddx[a(x)]+b(x)\displaystyle=a(x)\frac{d}{dx}[b(x)]+b(x)\frac{d}{dx}[a(x)]+b(x) (10.32)

Overall, we therefore can say that the derivative of a function f(x)=a(x)b(x)f(x)=a(x)b(x) is

dfdx=ddx[a(x)]b(x)+a(x)ddx[b(x]\frac{df}{dx}=\frac{d}{dx}[a(x)]b(x)+a(x)\frac{d}{dx}[b(x] (10.33)