A calculus of the absurd
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\LWRmarginnote }[1][]{}\)
\(\newcommand {\marginnote }[2][]{\qquad {\small \textrm {#2}}\LWRmarginnote }\)
\(\def \LWRsidenote {1}\)
\(\newcommand {\sidenotemark }[1][\LWRsidenote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\newcommand {\nicefrac }[3][]{\mathinner {{}^{#2}\!/\!_{#3}}}\)
\(\newcommand {\unit }[2][]{#1 \mathinner {#2}}\)
\(\newcommand {\unitfrac }[3][]{#1 \mathinner {{}^{#2}\!/\!_{#3}}}\)
\(\newcommand {\bm }[1]{\boldsymbol {#1}}\)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand {\Var }{\operatorname {Var}}\)
\(\newcommand {\Expected }{\operatorname {E}}\)
\(\newcommand {\abs }[1]{\left \lvert #1\right \rvert }\)
\(\newcommand {\norm }[1]{\left \lVert #1\right \rVert }\)
\(\newcommand {\rbrackets }[1]{\left (#1\right )}\)
\(\newcommand {\sbrackets }[1]{\left [#1\right ]}\)
\(\newcommand {\cbrackets }[1]{\left \{#1\right \}}\)
\(\newcommand {\RE }{\operatorname {Re}}\)
\(\newcommand {\IM }{\operatorname {IM}}\)
\(\newcommand {\Span }{\operatorname {span}}\)
4.12.4 Some interesting inequality proofs
-
Example 4.12.2 Let \(a, b, c\) be positive reals such that
\(\seteqnumber{0}{4.}{173}\)
\begin{equation}
a^2 - b^2 > c^2 - a^2.
\end{equation}
Prove that
\(\seteqnumber{0}{4.}{174}\)
\begin{equation}
a - b > c - a
\end{equation}
We want to prove the statement
\(\seteqnumber{0}{4.}{175}\)
\begin{align}
a^2 - b^2 > c^2 - a^2 \implies a - b > c - a.
\end{align}
We can prove the equivalent statement,
\(\seteqnumber{0}{4.}{176}\)
\begin{equation}
a - b \leqq c - a \implies a^2 - b^2 \leqq c^2 - a^2.
\end{equation}
Which in turn is the same as
\(\seteqnumber{0}{4.}{177}\)
\begin{equation}
2a \leqq b + c \implies 2a^2 \leqq c^2 + b^2.
\end{equation}
Let us fix some \(a, b, c \in \mathbb {R}\) such that \(a, b, c \geqq 0\). Then let us assume further that \(2a \leqq b + c\) in which case
\(\seteqnumber{0}{4.}{178}\)
\begin{align}
2a^2 &\leqq 2\left (\frac {b+c}{2}\right )^2 \\ &\leqq \frac {1}{2}c^2 + cb + \frac {b^2}{2}
\end{align}
This is pretty close to what we want - in fact if we could prove that \(cb \leqq \frac {1}{2}c^2 + \frac {1}{2}b^2\) we would be done.
\(\seteqnumber{0}{4.}{180}\)
\begin{align}
& cb \leqq \frac {1}{2}c^2 + \frac {1}{2}b^2 \\ &\iff 0 \leqq \frac {1}{2}c^2 - cb + \frac {1}{2} b^2 \\ &\iff 0 \leqq c^2 - 2cb + b^2 \\ &\iff 0 \leqq (c - b)^2
\end{align}
and the last statement is always true.
Therefore,
\(\seteqnumber{0}{4.}{184}\)
\begin{align}
2a^2 &\leqq \frac {1}{2}c^2 + cb + \frac {b^2}{2} &\leqq \frac {1}{2}c^2 + \frac {1}{2}c^2 + \frac {1}{2}b^2 + \frac {b^2}{2} \\ &\leqq c^2 + b^2
\end{align}
from which it follows that
\(\seteqnumber{0}{4.}{186}\)
\begin{align}
a^2 - b^2 \leqq c^2 - a^2
\end{align}
and then we can forget that we fixed \(a, b, c\) and we have a proof for any \(a, b, c\), so we are done.
\(\Box \)