A calculus of the absurd
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\LWRmarginnote }[1][]{}\)
\(\newcommand {\marginnote }[2][]{\qquad {\small \textrm {#2}}\LWRmarginnote }\)
\(\def \LWRsidenote {1}\)
\(\newcommand {\sidenotemark }[1][\LWRsidenote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\newcommand {\nicefrac }[3][]{\mathinner {{}^{#2}\!/\!_{#3}}}\)
\(\newcommand {\unit }[2][]{#1 \mathinner {#2}}\)
\(\newcommand {\unitfrac }[3][]{#1 \mathinner {{}^{#2}\!/\!_{#3}}}\)
\(\newcommand {\bm }[1]{\boldsymbol {#1}}\)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand {\Var }{\operatorname {Var}}\)
\(\newcommand {\Expected }{\operatorname {E}}\)
\(\newcommand {\abs }[1]{\left \lvert #1\right \rvert }\)
\(\newcommand {\norm }[1]{\left \lVert #1\right \rVert }\)
\(\newcommand {\rbrackets }[1]{\left (#1\right )}\)
\(\newcommand {\sbrackets }[1]{\left [#1\right ]}\)
\(\newcommand {\cbrackets }[1]{\left \{#1\right \}}\)
\(\newcommand {\RE }{\operatorname {Re}}\)
\(\newcommand {\IM }{\operatorname {IM}}\)
\(\newcommand {\Span }{\operatorname {span}}\)
13.4.2 Homogenous second-order ODEs
These are a bit icky, because they’re not solvable in general. Fortunately a lot of them are solvable.
Homogenous (i.e. everything is a function of only one variable) second-order, linear differential equations can be solved without too much difficulty. We can reduce an equation in the form
\(\seteqnumber{0}{13.}{8}\)
\begin{equation}
\label {2nd order homogenous linear differential equation} a\frac {d^2y}{dx^2} + b\frac {dy}{dx} + cy = 0
\end{equation}
to a quadratic by setting \(y=e^{\lambda x} \implies \frac {dy}{dx} = \lambda e ^{\lambda x} \implies \frac {d^2y}{dx^2} = \lambda ^2 e^{\lambda x}\).
From here,
\(\seteqnumber{0}{13.}{9}\)
\begin{align*}
& a \lambda ^2 e^{\lambda x} + b \lambda e^{\lambda x} + c e^{\lambda x} = 0 \\ & a \lambda ^2 + b \lambda + c = 0 \text { Which is fine as $e^x > 0$} \\ & \lambda = \frac {-b \pm \sqrt {b^2 - 4ac}}{2a}
\end{align*}
Here there are a number of possibilities for the value of the discriminant 9292 If you’ve no idea what this is, review the earlier section on quadratics..
-
• \(b^2 - 4ac > 0\), which is the "straightforward" case
-
• \(b^2 - 4ac = 0\), in which case there’s only one value of \(\lambda \)
-
• \(b^2 - 4ac < 0\), in which case we can use complex numbers and trigonometry.
In the case where \(\Delta > 0\) 9393 note that \(\Delta \) means "the disciminant" we have two possible solutions to the differential equation,
\(\seteqnumber{0}{13.}{9}\)
\begin{equation}
e^{\frac {-b \pm \sqrt {b^2-4ac}}{2a} x} \label {quadratic e}
\end{equation}
In the case where \(\Delta = 0\) we have only
\(\seteqnumber{0}{13.}{10}\)
\begin{equation*}
y(x) = e^{-\frac {b}{2a}x}
\end{equation*}
And in the case where \(\Delta < 0\) we have the same case as in Equation 13.10, except that there’s a complex part to the root9494 And, as
Euler might point out, \(e^{i\theta } = \cos (\theta ) + i\sin (\theta )\)