A calculus of the absurd
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\LWRmarginnote }[1][]{}\)
\(\newcommand {\marginnote }[2][]{\qquad {\small \textrm {#2}}\LWRmarginnote }\)
\(\def \LWRsidenote {1}\)
\(\newcommand {\sidenotemark }[1][\LWRsidenote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\newcommand {\nicefrac }[3][]{\mathinner {{}^{#2}\!/\!_{#3}}}\)
\(\newcommand {\unit }[2][]{#1 \mathinner {#2}}\)
\(\newcommand {\unitfrac }[3][]{#1 \mathinner {{}^{#2}\!/\!_{#3}}}\)
\(\newcommand {\bm }[1]{\boldsymbol {#1}}\)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand {\Var }{\operatorname {Var}}\)
\(\newcommand {\Expected }{\operatorname {E}}\)
\(\newcommand {\abs }[1]{\left \lvert #1\right \rvert }\)
\(\newcommand {\norm }[1]{\left \lVert #1\right \rVert }\)
\(\newcommand {\rbrackets }[1]{\left (#1\right )}\)
\(\newcommand {\sbrackets }[1]{\left [#1\right ]}\)
\(\newcommand {\cbrackets }[1]{\left \{#1\right \}}\)
\(\newcommand {\RE }{\operatorname {Re}}\)
\(\newcommand {\IM }{\operatorname {IM}}\)
\(\newcommand {\Span }{\operatorname {span}}\)
10.3 Differentiating polynomials
To differentiate \(f(x) = x^n\) some algebra is required6767 If you’re not confident in conducting algebraic manipulations (i.e. “doing algebra”) then it really is worth spending time reviewing this; it’s foundational for
everything else in mathematics.
\(\seteqnumber{0}{10.}{16}\)
\begin{align}
\lim _{h \to 0} \frac {f(x+h) - f(x)}{h} &= \lim _{h \to 0} \frac {(x+h)^n - x^n}{h} \\ &= \lim _{h \to 0} \frac { x^n + \binom {n}{1} x^{n-1}h + \binom {n}{2} x^{n-2}h^2 + ... + h^n - x^n}{h} \label {applying binomial theorem}
\\ &= \lim _{h \to 0} \frac {\binom {n}{1} x^{n-1}h + \binom {n}{2} x^{n-2}h^2 + ... + h^n}{h} \label {cancellation} \\ &= \lim _{h \to 0} \binom {n}{1} x^{n-1} + \binom {n}{2} x^{n-2}h + ... + h^{n-1} \label {div by h} \\
&= nx^{n-1}
\end{align}
Note that in the process of carrying out the expansion
-
• In Equation 10.18 we used the binomial theorem (as in Equation 3.64).
-
• In Equation 10.19 we used the fact that \(x^n + (-x^n) = 0\)
-
• In Equation 10.20 we divided through by \(h\).
-
• In the final step, we applied the property that \(h \cdot X\) (where \(X\) is some expression6868 Where \(X \in \mathbb {R}\)) is \(0\) as \(h \to 0\).
We can then combine this with the rule for the derivatives of sums from above to find the derivatives of any polynomial.
For example, we can find the derivative of \(x^2+3x-8\) (which was the example used above).
\(\seteqnumber{0}{10.}{21}\)
\begin{align}
\frac {d}{dx}(x^2+3x-8) &= \frac {d}{dx}[x^2] + \frac {d}{dx}[3x] + \frac {d}{dx}[-8] \\ &= 2x + 3
\end{align}
Why is \(\frac {d}{dx}(-8) = 0\)?
Let’s suppose we have a function \(f(x)=c\), then the derivative of \(f(x)\) is just
\(\seteqnumber{0}{10.}{23}\)
\begin{align}
\lim _{h \to 0} \frac {-8 - (-8)}{h} &= \lim _{h \to 0} \frac {0}{h} \\ &= 0
\end{align}