A calculus of the absurd
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\LWRmarginnote }[1][]{}\)
\(\newcommand {\marginnote }[2][]{\qquad {\small \textrm {#2}}\LWRmarginnote }\)
\(\def \LWRsidenote {1}\)
\(\newcommand {\sidenotemark }[1][\LWRsidenote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\newcommand {\nicefrac }[3][]{\mathinner {{}^{#2}\!/\!_{#3}}}\)
\(\newcommand {\unit }[2][]{#1 \mathinner {#2}}\)
\(\newcommand {\unitfrac }[3][]{#1 \mathinner {{}^{#2}\!/\!_{#3}}}\)
\(\newcommand {\bm }[1]{\boldsymbol {#1}}\)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand {\Var }{\operatorname {Var}}\)
\(\newcommand {\Expected }{\operatorname {E}}\)
\(\newcommand {\abs }[1]{\left \lvert #1\right \rvert }\)
\(\newcommand {\norm }[1]{\left \lVert #1\right \rVert }\)
\(\newcommand {\rbrackets }[1]{\left (#1\right )}\)
\(\newcommand {\sbrackets }[1]{\left [#1\right ]}\)
\(\newcommand {\cbrackets }[1]{\left \{#1\right \}}\)
\(\newcommand {\RE }{\operatorname {Re}}\)
\(\newcommand {\IM }{\operatorname {IM}}\)
\(\newcommand {\Span }{\operatorname {span}}\)
14.7 Cool stuff with trigonometry
14.7.1 Proving identities
Solution :
We can write \(\cos (a + b)\) as the real part of \(e^{(a+b)i}\). This because \(\cos (a+b)\) is equal to the real part of \(\cos (a+b) + i\sin (a+b)\), which is equal to \(e^{(a+b)i}\).
\(\seteqnumber{0}{14.}{56}\)
\begin{align*}
\cos (a + b) &= \Re (e^{(a + b)i}) \\ &= \Re (e^{ai} e^{bi}) \\ &= \Re ((\cos (a) + i\sin (a))(\cos (b)+i\sin (b))) \\ &= \Re (\cos (a)\cos (b) + i\cos (a)\cos (b) + i\sin (a)\cos (b) + i^2\sin (a)\sin (b)) \\ &= \cos
(a)\cos (b) - \sin (a)\sin (b)
\end{align*}
Solution : Firstly, we can write \(\sin (3x)\) as the equation
\(\seteqnumber{0}{14.}{56}\)
\begin{equation}
\sin (3x) = \Im (\cos (3x) + i\sin (3x))
\end{equation}
We can then apply De Moivre’s theorem106 106 \(\cos (nx) + i\sin (nx) = (\cos (x) + i\sin (x))^n\) to rewrite the expression in terms of \(\sin (x)\) and \(\cos (x)\)
\(\seteqnumber{0}{14.}{57}\)
\begin{equation}
\Im (\cos (3x) + i\sin (3x)) = \Im ((\cos (x) + i\sin (x))^3)
\end{equation}
We can now expand the binomial obtained, which leads to the result that
\(\seteqnumber{0}{14.}{58}\)
\begin{equation}
\Im ((\cos (x) + i\sin (x))^3) = \Im ((\cos ^3(x) + 3\cos ^2(x)i\sin (x) + 3\cos (x)i^2\sin ^2(x) + i^3\sin ^3(x)))
\end{equation}
Then, we can tidy this up a bit, leading to the expression
\(\seteqnumber{0}{14.}{59}\)
\begin{equation}
\Im ((\cos ^3(x) + 3\cos ^2(x)\sin (x)i - 3\cos (x)\sin ^2(x) - i\sin ^3(x)))
\end{equation}
We are only interested in the imaginary parts of the expansion, so it is therefore equal to just
\(\seteqnumber{0}{14.}{60}\)
\begin{equation}
3\cos ^2(x)\sin (x) - \sin ^3(x)
\end{equation}
We want \(\sin (3x)\) in terms of \(\sin (x)\), however! There’s a rogue gatecrasher 107 107 A handy way to remember whether \(\cos (x)\) or \(\sin (x)\) shows a certain property is (as previously mentioned,
TODO: mention) that \(\sin (x)\) generally behaves "better" than \(\cos (x)\). in the previous expression - the \(\cos (x)\)! Fortunately we can remove the \(\cos ^2(x)\) without too much difficulty using the Pythagorean identity.
\(\seteqnumber{0}{14.}{61}\)
\begin{align}
3(1-\sin ^2(x))\sin (x) - \sin ^3(x) &= 3\sin (x)-3\sin ^3(x) - \sin ^3(x) \\ &= 3\sin (x)-4\sin ^3(x)
\end{align}
Thus, we can say that
\(\seteqnumber{0}{14.}{63}\)
\begin{equation}
\sin (3x) = 3\sin (x)-4\sin ^3(x)
\end{equation}