A calculus of the absurd
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\LWRmarginnote }[1][]{}\)
\(\newcommand {\marginnote }[2][]{\qquad {\small \textrm {#2}}\LWRmarginnote }\)
\(\def \LWRsidenote {1}\)
\(\newcommand {\sidenotemark }[1][\LWRsidenote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\newcommand {\nicefrac }[3][]{\mathinner {{}^{#2}\!/\!_{#3}}}\)
\(\newcommand {\unit }[2][]{#1 \mathinner {#2}}\)
\(\newcommand {\unitfrac }[3][]{#1 \mathinner {{}^{#2}\!/\!_{#3}}}\)
\(\newcommand {\bm }[1]{\boldsymbol {#1}}\)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand {\Var }{\operatorname {Var}}\)
\(\newcommand {\Expected }{\operatorname {E}}\)
\(\newcommand {\abs }[1]{\left \lvert #1\right \rvert }\)
\(\newcommand {\norm }[1]{\left \lVert #1\right \rVert }\)
\(\newcommand {\rbrackets }[1]{\left (#1\right )}\)
\(\newcommand {\sbrackets }[1]{\left [#1\right ]}\)
\(\newcommand {\cbrackets }[1]{\left \{#1\right \}}\)
\(\newcommand {\RE }{\operatorname {Re}}\)
\(\newcommand {\IM }{\operatorname {IM}}\)
\(\newcommand {\Span }{\operatorname {span}}\)
4.3.5 Completing the square
One core idea is that we can write any quadratic in the form
\(\seteqnumber{0}{4.}{32}\)
\begin{equation}
y = a(x + b)^2 + c
\end{equation}
This is very important, because it allows us to find \(x\) given a value for \(y\), e.g. if \(y=0\), then
\(\seteqnumber{0}{4.}{33}\)
\begin{align}
a(x + b)^2 + c = 0 \\ & (x+b^2)^2 = -\frac {c}{a} \\ & x + b^2 = \sqrt {-\frac {c}{a}} \\ & x = -b^2 + \sqrt {-\frac {c}{a}}
\end{align}
How do we write a quadratic in this form? There are a lot of ways to do this, and this is not the simplest approach, but I found it was the one which best allowed me to understand the general idea and this method can be applied to other problems. We start by working backwards - i.e. we
will expand \(a(x + b)^2 + c\), which allows us to deduce that
\(\seteqnumber{0}{4.}{37}\)
\begin{equation}
y = ax^2 + 2abx + ab^2 + c \label {expanded completed square}
\end{equation}
From here, we can “compare coefficients” (see Section 4.3.4).
We start by comparing the coefficients of this quadratic with those of the polynomial in Equation 4.38. From this we can deduce that
\(\seteqnumber{0}{4.}{39}\)
\begin{align}
\begin{cases} a = 3 \\ 2ab = 36 \\ ab^2 + c = 42 \end {cases}
\end{align}
We can solve this by first substituting \(a=3\) in the second equation, i.e. we have that
\(\seteqnumber{0}{4.}{40}\)
\begin{equation}
2\cdot 3 \cdot b = 36
\end{equation}
From which we have that \(b = \frac {36}{6} = 6\). We can then substitute the value \(b=64\) into \(b^2 + c = 42\), which gives that
\(\seteqnumber{0}{4.}{41}\)
\begin{equation}
3\cdot 36 + c = 42
\end{equation}
And thus that \(c=42-108=-66\). Therefore,
\(\seteqnumber{0}{4.}{42}\)
\begin{equation}
3x^2 + 36x + 42 = 3(x+3)^2 - 66
\end{equation}
We use the completed-square form of the quadratic (which we found in the previous example). This means that the values of \(x\) we are interested in are those which satisfy
\(\seteqnumber{0}{4.}{44}\)
\begin{equation}
3(x+3)^2 - 66 = 0.
\end{equation}
We then add \(66\) to both sides, which gets us the equivalent result
\(\seteqnumber{0}{4.}{45}\)
\begin{equation}
3(x+3)^2 = 66.
\end{equation}
Then we divide by \(3\), which gives
\(\seteqnumber{0}{4.}{46}\)
\begin{align}
(x+3)^2 &= \frac {66}{3} \\ &= 22
\end{align}
Therefore,
\(\seteqnumber{0}{4.}{48}\)
\begin{align}
x + 3 &= \pm \sqrt {22}.
\end{align}
Thus the values of \(x\) which solve the equation are
\(\seteqnumber{0}{4.}{49}\)
\begin{equation}
x = -3 \pm \sqrt {22}
\end{equation}