7.5 Writing sums of trig functions as a single trig function

Example 7.5.1

Express 3cos(θ)+4sin(θ)3\cos(\theta)+4\sin(\theta) in the form Rsin(θ+α)R\sin(\theta+\alpha).

Solution: start by applying the angle addition formula for sin(θ)\sin(\theta) (Equation 7.8).

Rsin(θ+α)\displaystyle R\sin(\theta+\alpha) =Rcos(α)sin(θ)+Rsin(α)cos(θ)\displaystyle=R\cos(\alpha)\sin(\theta)+R\sin(\alpha)\cos(\theta)
=1sin(θ)+3cos(θ)\displaystyle=\hskip 32.0pt1\sin(\theta)+\hskip 32.0pt3\cos(\theta)

From here, comparing coefficients gives

{Rcos(α)=1Rsin(α)=3\begin{cases}R\cos(\alpha)=1\\ R\sin(\alpha)=3\end{cases}

This means

R2cos2(α)+R2sin2(α)=1+32\displaystyle R^{2}\cos^{2}(\alpha)+R^{2}\sin^{2}(\alpha)=1+3^{2}
R2(cos2(α)+sin2(α)=10\displaystyle R^{2}(\cos^{2}(\alpha)+sin^{2}(\alpha)=10
R2=10\displaystyle R^{2}=10
R=10\displaystyle R=\sqrt{10}

as well as that

Rsin(α)Rcos(α)=3\displaystyle\frac{R\sin(\alpha)}{R\cos(\alpha)}=3
tan(α)=3\displaystyle\tan(\alpha)=3
α=arctan(3)\displaystyle\alpha=\arctan(3)

So the solution is

sin(θ)+3cos(θ)=10sin(x+arctan(3))sin(\theta)+3cos(\theta)=\sqrt{10}\sin\left(x+\arctan(3)\right)

Note that this technique is very useful for solving equations of the form Acos(θ)+Bsin(θ)=cA\cos(\theta)+B\sin(\theta)=c, as we just rewrite the left hand side as a single trigonometric function, and then use the method for solving such trig functions66 6 Explored in the section above..