15.3 Relationship to trig functions

Previously (in Section 14.7.2) we showed two very useful identities

cos(x)=eix+eix2\displaystyle\cos(x)=\frac{e^{ix}+e^{-ix}}{2} (15.25)
sin(x)=eixeix2i\displaystyle\sin(x)=\frac{e^{ix}-e^{-ix}}{-2i} (15.26)

If, in either of these equations we set x=iθx=i\theta we can write sin(iθ)\sin(i\theta) and cos(iθ)\cos(i\theta) in terms of sinh(x)\sinh(x) and cosh(x)\cosh(x), respectively.

sin(iθ)\displaystyle\sin(i\theta) =ei(iθ)ei(iθ)2i\displaystyle=\frac{e^{i(i\theta)}-e^{-i(i\theta)}}{-2i} (15.27)
=eθeθ2i\displaystyle=\frac{e^{-\theta}-e^{\theta}}{-2i} (15.28)
=ieθeθ2 multiplying by ii=1\displaystyle=i\frac{e^{\theta}-e^{-\theta}}{2}\text{ multiplying by $\frac{i}% {i}=1$} (15.29)
=isinh(θ)\displaystyle=i\sinh(\theta) (15.30)
cos(iθ)\displaystyle\cos(i\theta) =ei(iθ)+ei(iθ)2\displaystyle=\frac{e^{i(i\theta)}+e^{-i(i\theta)}}{2} (15.31)
=eθ+eθ2\displaystyle=\frac{e^{-\theta}+e^{\theta}}{2} (15.32)
=cosh(θ)\displaystyle=\cosh(\theta) (15.33)