14.4 The exponential form of a complex number

Consider the Maclaurin series for cos(x)\cos(x), isin(x)i\sin(x) and eixe^{ix}. What happens when we add cos(x)+isin(x)\cos(x)+i\sin(x)? Well a fair amount of algebra to start with! After that, however, we do get an interesting result, though.

cos(x)+isin(x)\displaystyle\cos(x)+i\sin(x) =1x22!+x44!x66!+ix1!ix33!+ix55!ix77!+\displaystyle=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{ix}{1% !}-\frac{ix^{3}}{3!}+\frac{ix^{5}}{5!}-\frac{ix^{7}}{7!}+...
=1+ix1!x22!ix33!+x44!+ix55!x66!ix77!+\displaystyle=1+\frac{ix}{1!}-\frac{x^{2}}{2!}-\frac{ix^{3}}{3!}+\frac{x^{4}}{% 4!}+\frac{ix^{5}}{5!}-\frac{x^{6}}{6!}-\frac{ix^{7}}{7!}+...
=1+ix1!+(ix)22!+(ix)33!+(ix)44!+(ix)55!+(ix)66!+(ix)77!+\displaystyle=1+\frac{ix}{1!}+\frac{(ix)^{2}}{2!}+\frac{(ix)^{3}}{3!}+\frac{(% ix)^{4}}{4!}+\frac{(ix)^{5}}{5!}+\frac{(ix)^{6}}{6!}+\frac{(ix)^{7}}{7!}+...
=eix\displaystyle=e^{ix}

This means that 44 4 This is sometimes referred to as ”Euler’s formula”

eix=cos(x)+isin(x)e^{ix}=\cos(x)+i\sin(x) (14.51)

Which provides a link between trigonometry and complex numbers! This turns out to be very useful in proving trig identities.

For any complex number, where rr is the modulus and θ\theta is the argument, we have

reθi=cos(θ)+isin(θ)re^{\theta i}=\cos(\theta)+i\sin(\theta) (14.52)

We can use this to write other complex numbers, such as 1+i1+i in the form reiθre^{i\theta}.