The product rule
Proving this is a little tricky, and needs some ingenuity. The product rule
gives us a way to find the derivative of a function which is the product of two
functions f ( x ) = a ( x ) ⋅ b ( x ) f(x)=a(x)\cdot b(x) .
The trick here is to "add zero"
lim h → 0 f ( x + h ) − f ( x ) h \displaystyle\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
= a ( x + h ) b ( x + h ) − a ( x ) b ( x ) h \displaystyle=\frac{a(x+h)b(x+h)-a(x)b(x)}{h}
(10.27)
= lim h → 0 a ( x + h ) b ( x + h ) − a ( x + h ) b ( x ) + a ( x + h ) b ( x ) − a ( x ) b ( x ) h \displaystyle=\lim_{h\to 0}\frac{a(x+h)b(x+h)-a(x+h)b(x)+a(x+h)b(x)-a(x)b(x)}{h}
(10.28)
= lim h → 0 a ( x + h ) ( b ( x + h ) − b ( x ) ) + b ( x ) ( a ( x + h ) − a ( x ) h \displaystyle=\lim_{h\to 0}\frac{a(x+h)(b(x+h)-b(x))+b(x)(a(x+h)-a(x)}{h}
(10.29)
= lim h → 0 a ( x + h ) ( b ( x + h ) − b ( x ) ) h + lim h → 0 b ( x ) ( a ( x + h ) − a ( x ) h \displaystyle=\lim_{h\to 0}\frac{a(x+h)(b(x+h)-b(x))}{h}+\lim_{h\to 0}\frac{b(%
x)(a(x+h)-a(x)}{h}
(10.30)
= lim h → 0 a ( x + h ) ( b ( x + h ) − b ( x ) ) h + lim h → 0 b ( x ) ( a ( x + h ) − a ( x ) h \displaystyle=\lim_{h\to 0}a(x+h)\frac{(b(x+h)-b(x))}{h}+\lim_{h\to 0}b(x)%
\frac{(a(x+h)-a(x)}{h}
(10.31)
If (as it does) h → 0 h\to 0 then a ( x + h ) → a ( x ) a(x+h)\to a(x) , we can rewrite the limit as
a ( x ) lim h → 0 b ( x + h ) − b ( x ) h + b ( x ) lim h → 0 a ( x + h ) − a ( x ) h \displaystyle a(x)\lim_{h\to 0}\frac{b(x+h)-b(x)}{h}+b(x)\lim_{h\to 0}\frac{a(%
x+h)-a(x)}{h}
= a ( x ) d d x [ b ( x ) ] + b ( x ) d d x [ a ( x ) ] + b ( x ) \displaystyle=a(x)\frac{d}{dx}[b(x)]+b(x)\frac{d}{dx}[a(x)]+b(x)
(10.32)
Overall, we therefore can say that the derivative of a function f ( x ) = a ( x ) b ( x ) f(x)=a(x)b(x) is
d f d x = d d x [ a ( x ) ] b ( x ) + a ( x ) d d x [ b ( x ] \frac{df}{dx}=\frac{d}{dx}[a(x)]b(x)+a(x)\frac{d}{dx}[b(x]
(10.33)